FlowScience总部位于美国新墨西哥州圣达菲市,开创“流体体积”或VOF方法。我们通过TruVOF算法,在跟踪不同液体/气体界面的速度和准确性方面取得了开创性的进步。今天FlowScience产品提供完整的多物理场仿1真,具有多种建模功能包括流体,结构相互作用,6-DoF移动物体和多相流。从一开始,我们的愿景就是为客户提供**的流动建模软件和服务。
在没有固体边界的情况下,不同形状控制体积的网格之间几乎没有根本的区别。一些方法要求用户存储更多信息(例如,节点位置和各种几何因素),并且一些方法根据元素失真量显示出不同的准确度水平。但是,在所有情况下,其基本思想都是离散逼近,FLOW3D,其中为网格中的每个元素计算流体力和通量。
障碍边界的问题较常被提出作为可变形网格的优点,因为它们可以被构造以适应几何形状。这种灵活性带来了两个后果。其中一个后果就是这些网格必须是非结构化的以供一般使用。这是因为结构化网格在元素翻转之前只能经受有限的变形。另一个结果是元素的变形使得构建准确的数值近似变得更加困难。
FlowScience总部位于美国新墨西哥州圣达菲市,FLOW3D泥沙工程设计,开创“流体体积”或VOF方法。我们通过TruVOF算法,在跟踪不同液体/气体界面的速度和准确性方面取得了开创性的进步。今天FlowScience产品提供完整的多物理场仿1真,具有多种建模功能包括流体,结构相互作用,6-DoF移动物体和多相流。从一开始,FLOW3D截流模型,我们的愿景就是为客户提供**的流动建模软件和服务。
VOF与伪VOF示例试图计算气体和液体流量的后果可以用一个简单的例子来说明。这里显示的所有计算结果都是使用 FLOW-3D生成的,该FLOW-3D具有可在伪VOF模式下运行的双流体选项。想象一下,从恒久的缝隙中以恒定的速度喷出的水柱流入空气。如果我们忽略重力并保持喷流速度较低(比如说10.0厘米/秒),FLOW3D导流和截流模型,我们预计喷流或多或少地不受空气阻碍(参见 图1中的 FLOW-3D结果),通过其VOF自由曲面模型)。
伪VOF方法在射流尖1端产生了一个增长(图2)。这种增长是数值的,而不是物理的,因为它与空气密度无关(例如,空气密度比液体密度小100,1000和10,000倍,生长基本保持不变)。
后来, FLOW-3D 射流(图3)撞击右侧墙壁,一小部分水流进入墙壁的狭缝。
相比之下,虚拟VOF方法中较低密度的气流在喷射撞击墙壁之前将液体拉入槽中(图4)。此外,由于腔室内空气的不可压缩性,伪VOF方法中流出槽的液体量必须等于注射量,这比大多数物理条件下预期的要多。
另一种伪VOF的做法是使用某种类型的高阶平流方案来跟踪接口。界面表现为密度的快速变化。这种方案导致气体和液体之间的平滑过渡区域覆盖几个控制体积,而不是像原始VOF方法那样局限在一个控制体积中的尖锐界面。大多数人不实施自由表面边界条件的原因是它需要对现有程序的结构进行重大改变,并且必须小心翼翼地进行,以避免数值不稳定性。
FLOW-3D 具有推荐用于成功处理自由表面的所有成分。此外,它在三个主要成分的每一个中都包含了追赶原始VOF方法的重大改进
FlowScience总部位于美国新墨西哥州圣达菲市,开创“流体体积”或VOF方法。我们通过TruVOF算法,在跟踪不同液体/气体界面的速度和准确性方面取得了开创性的进步。
FLOW-3D / MP使建模人员能够利用高性能计算集群来解决大型域或长时间运行时的问题,缩短设计周期,并**会在设计周期内进行全1面的参数研究。所有这些都可以在保持 FLOW-3D精度的情况下实现。