设计风暴事件在暴风雨事件发生后,砂砾和砂砾落在底壳上。它们通过渐进式液压跳跃重新悬挂和抽出。在清洁循环期间,水在沟槽远端的下泵以比通过流入涵洞进入的速率更高的速率被抽出。当水降至较1低正常操作水平以下时,流入物沿着ogee形壁加速并较终变为**临界状态。一旦集水槽中的水位接近地板,液压跳跃就形成并沿着集水槽前进,直到下远端泵失去其吸力。你可以在下面的动画中观察到这一点。在此序列中,液压跳跃起着两个重要作用。在跳跃的上游的**临界部分冲刷砂砾和砂砾的油底壳地板,从而将其重新悬浮以被泵送掉。瞥一眼动画中的色标会告诉你,ogee底部的冲刷速度接近9英尺/秒。同时,跳跃下游的升高的水位提升使得下端泵具有足够的浸没以继续操作直到抽出贮槽。
今天FlowScience产品提供完整的多物理场仿1真,具有多种建模功能包括流体,结构相互作用,6-DoF移动物体和多相流。从一开始,我们的愿景就是为客户提供**的流动建模软件和服务。
水坝水电项目对三维流动效应敏感,准确预测流动模式对优化效率非常重要。FLOW-3D是自由表面流动建模领域的行业领1导者,大坝专业人员使用它来解决现有和拟议项目的各种设计问题。FLOW-3D可以解决的常见问题包括优化进水口和溢洪道的水流效率和分配,执行复杂的大坝环境影响评估以及设计和优化鱼道。
FlowScience总部位于美国新墨西哥州圣达菲市,开创“流体体积”或VOF方法。我们通过TruVOF算法,在跟踪不同液体/气体界面的速度和准确性方面取得了开创性的进步。今天FlowScience产品提供完整的多物理场仿1真,截流模型,具有多种建模功能包括流体,结构相互作用,6-DoF移动物体和多相流。从一开始,我们的愿景就是为客户提供**的流动建模软件和服务。
缺陷预测用粒子识别填充缺陷FLOW-3D CAST v5使用颗粒识别填充气体引起的填充缺陷变得更加容易。不仅缺陷更容易识别,预测它们的计算成本也显着降低。
已经引入空隙颗粒来表示塌陷的气体区域。以前,如果压缩的气体区域变得如此压缩以至于在数值网格中无法解析,则会从模拟中消失。空隙颗粒表现得像小气泡,并通过阻力和压力与金属相互作用。它们的尺寸响应于周围的金属压力而变化,并且它们在填充结束时的较终位置表明由于空气夹带和/或氧化物而导致的潜在缺陷。